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Viewpoint: The human capital approach to
inference

W. Bentley MacLeod Columbia University and NBER

Abstract. The purpose of this essay is to discuss two approaches to inference and how
“human capital” can provide a way to combine them. The first approach, ubiquitous
in economics, is based upon the Rubin–Holland potential outcomes model and relies
upon randomized treatment to measure the causal effect of choice. The second approach,
widely used in the pattern recognition and machine learning literatures, assumes that
choice conditional upon current information is optimal (or at least high quality), and
then provides techniques to generalize observed choice to new cases. The “human capital”
approach combines these methods by using observed decisions by experts to reduce the
dimensionality of the feature space and allow the categorization of decisions by their
propensity score. The fact that the human capital of experts is heterogeneous implies that
errors in decision making are inevitable. Moreover, under the appropriate conditions,
these decisions are random conditional upon the propensity score. This in turn allows us
to identify the conditional average treatment effect for a wider class of situations than
would be possible with randomized control trials. This point is illustrated with data from
medical decision making in the context of treating depression, heart disease and adverse
childbirth events.

Résumé. Point de vue : L’approche à l’inférence par le capital humain. Le but de cet es-
sai est de discuter deux approches à l’inférence, et de montrer comment le « capital
humain » suggère une façon de les combiner. La première approche, omniprésente en
science économique, est fondée sur le modèle Rubin/Holland des résultats potentiels, et
repose sur un traitement randomisé pour mesurer l’effet causal des choix. La seconde
approche, vastement utilisée dans la reconnaissance des patterns et dans la littérature sur
l’apprentissage machine, présume que le choix conditionné par l’information disponible
est optimal (ou au moins de haute qualité), et fournit des techniques pour généraliser
les choix observés à de nouveaux cas de figure. L’approche par le « capital humain »
combine ces méthodes en utilisant les décisions observées des experts pour réduire la di-
mensionnalité de l’espace de décision et permettre la catégorisation des décisions selon
leur propensity scope. Le fait que le capital humain des experts est hétérogène implique
que des erreurs dans la prise de décision sont inévitables. De plus, sous certaines conditions
appropriées, ces décisions sont aléatoirement conditionnées par le propensity score. Voilà
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qui permet d’identifier l’effet du traitement conditionnel moyen pour une classe plus vaste
de situations que ce qui est possible avec des essais contrôlés et randomisés. Ce point est
illustré avec des données de prises de décision médicales dans un contexte de traitement
de la dépression, de maladie cardiaque, et d’incidents indésirables lors de l’accouchement.

JEL classification: C13, C18, I12, J44

1. Introduction

False facts are highly injurious to the progress of science, for they often endure
long; but false views, if supported by some evidence, do little harm, for everyone
takes a salutary pleasure in proving their falseness; and when this is done, one path
towards error is closed and the road to truth is often at the same time opened.

Charles Darwin’s Descent of Man, Vol. II, ch. 2, 1871

There are two distinct approaches in empirical labour economics. The first ap-
proach addresses the identification problem that arises when individuals self-
select into different observed treatments or choices by either explicitly random-
izing treatments/choices in the context of an experiment (Charness and Kuhn
2011 and List and Rasul 2011), or through the use of a natural experiment that
allows for an instrumental variables strategy (Angrist et al. 1996 and Angrist
and Krueger 1999). The second approach uses structural models that assume
individuals make utility maximizing decisions within a well defined environment,
and then proceeds to measure the value of the unknown parameters. A classic
example of this is the well-known Roy (1951) model, where we know that the
model can be identified only under strong assumptions (Heckman and Honore
1990, Heckman and Vytlacil 2005).

In this paper, I review some recent work that combines these perspectives to
provide a way to extend the scope of randomization to environments where ran-
domized control trials are not possible, either due to the problem of constructing
an adequate subject pool, or because the number of cases to be considered is sim-
ply too large. The fact that randomized trials are limited by their costs has long
been recognized. Fisher (1936) was the early leader in the field, with early work
tackling the problem of improving agricultural production in developed (Yates
1933; Bose and Mahalanobis 1938) and developing countries (Bose and Maha-
lanobis 1938). Such experiments can take many years, and it was understood
early on that one could not rely only upon experimental methods. For example,
Mahalanobis (1944) provides a wonderful discussion of the survey techniques he
developed to supplement experimental studies of Indian agriculture.

The rise of experimental economics may be attributed to the combination
of many new game theoretic ideas developed in recent decades, combined with
the fact they these ideas can be explored at a relatively low cost using college
students as subjects. Moreover, there is an increased awareness of some of the
stringent conditions needed to ensure the causal identification of an intervention
(Holland 1986 and Imbens and Rubin 2015). The result is a large increase in
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the use of field experiments to measure the effect of treatments using realistic
interventions.1 These experiments increase the external validity of the results
relative to laboratory experiments. However, they are limited in both the size of
the monetary rewards that can be used, and the period of time over which it is
feasible to run a field experiment. As a consequence, Deaton (2010) has observed
that many questions of interest and importance cannot be studied with purely
experimental techniques.

One of these areas is expert decision making, particularly by physicians. Med-
ical decision making is an interesting case because randomized control trials
(RTCs) are widely used to explore the efficacy of medical treatments.2 I briefly
review the Rubin–Holland potential outcomes framework and show that it has
performed rather poorly in determining the appropriate intervention for the treat-
ment of depression.3 This is a nice example for a number of reasons. First, the
treatment of depression with medication is a multi-billion industry, funded in
large part by health insurance. For example, in 2013, Abilify (Aripiprazole) was
the top selling drug in the United States. It was initially approved for the treat-
ment of schizophrenia but is now used “off label” for a wide variety of psychiatric
conditions. In the absence of good clinical guidance, there may be a potentially
large misallocation of resources (see Frank and McGuire 2000). Second, subjects
who face a high risk of suicide are, for ethical reasons, barred from participating
in these studies for the treatment of depression, yet they are one of the prime ben-
eficiaries of good treatment. Third, measuring the outcome of an intervention is
difficult. In the case of depression, one uses a survey instrument that may or may
not be related to outcomes such as suicidality and labour market performance.
Fourth, the response to interventions is likely to be very heterogeneous. In the case
of selective serotonin reuptake inhibitors (SSRIs), the effect can vary from feeling
slightly better to increased suicide risk. The challenge is to be able to predict for
a given patient the likely consequence of treatment given his or her characteris-
tics. The heterogeneity in response presents a particular challenge. When a drug,
say, an antibiotic, is expected to be relatively safe, then the goal of an RCT is to
measure its effectiveness. With a large number of individuals one can obtain a
good measure of the average treatment effect. The difficulty arises where there is
heterogeneity in the sign of the treatment effect—it harms some individuals and
helps others. In that case, if one ignores the heterogeneity, then the average treat-
ment effect from a trial might be zero, even though the drug is very effective (or
dangerous) for some individuals. When the variability in patient characteristics
is large, then conducting trials for all patient types is simply impossible.

The approach introduced in Currie and MacLeod (2017) and Currie et al.
(2016) builds upon the idea that each doctor can be viewed as conducting their
own trial. This makes the human capital approach quite different from

1 See for example List and Rasul (2011) and Banerjee and Duflo (2009).
2 Angrist and Pischke (2010) on page 24 state that “[t]his point has long been understood in

medicine, where clinical evidence of therapeutic effectiveness has for centuries run ahead of the
theoretical understanding of disease.”

3 This point is not new. See Ludwig et al. (2009).
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extensions of the Roy model, as in Heckman and Vytlacil (2005). In the Roy
model, identification results from shocks to individual preferences, who then
choose to enter the treated or untreated groups. If the shocks affect only a limited
set of individuals, then one is identifying a marginal treatment effect. As Heckman
and Vytlacil (2005) discuss in detail, the extent to which one can identify useful
treatment effects depends upon the variation in treatment for the population of
interest.

Data with individuals treated by physicians provide a potentially much larger
set of possible treatments and responses than is possible with randomized trials
or IV methods. The job of a physician is to choose treatment as a function of ob-
served individual characteristics Xi . Each treatment can be viewed as a potential
experiment or data point. However, since professionals make complex decision,
errors are inevitable (Kahneman and Klein 2009). This implies that for a group of
patients with medically similar conditions (say, condition X ), the physician may
make different treatment choices. In that case, one can estimate the treatment
effect for this group by comparing the outcomes for the treated and untreated
individuals, conditional upon X.

The difficulty is that the number of observably different individuals is so large
that one would not have sufficient power to carry out such a measurement. Currie
and MacLeod (2017) and Currie et al. (2016) solve this problem by using the data
from all physicians to divide patients into groups with the same propensity for
treatment. They follow the machine learning literature to endogenously group
individuals into different risk classes using the fact that physicians are experts
who can characterize patient types, though with some noise. Since the grouping is
done using many physicians, it represents the average views of these professionals
and is not influenced by the choices of any single physician.

First, this approach allows us to measure the extent to which physicians vary
their decision rules across groups and then to identify variation in physician
practice style. Second, under the appropriate conditions, we can identify the
treatment effect by patient characteristic and show that variation in physician
practice style for a group of patients with the same characteristics is systematically
related to patient outcomes.

There is a large literature documenting regional variation in treatment inten-
sity (Skinner 2012), with Finkelstein et al. (2016) finding that about half of the
variation is due to physician decision making. They point out that their approach
cannot provide guidance regarding the welfare effects of this variation. In con-
trast, the approach described here provides information on how practice style
varies with patient characteristics and how such practice style can be modified to
improve medical outcomes.

Currie et al. (2016) find that in the case of heart attack patients, increasing treat-
ment intensity for all risk classes results in better outcomes. Currie and MacLeod
(2017) highlight the importance of physician diagnostic skill. They find, con-
sistent with public perception, that, in New Jersey, a lower C-section rate for
low-risk women would improve outcomes. However, they find the opposite effect
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for high-risk women. In that case, a higher C-section rate would improve matters.
Given that women are being advised to seek out hospitals with low C-section
rates (Consumer Reports 2016), this suggests that measuring the heterogeneity
in treatment effects is not a purely academic issue but one that touches upon im-
portant public health considerations. In the next section, I provide an overview
of the approach and lay out the agenda for the paper.

2. Overview

The goal of measuring the treatment effect is to make a better decision. Sec-
tion 3 provides a brief review of the Rubin–Holland model of causal inference.
Section 4 discusses the two contrasting approaches to evaluating decisions. As
an example, consider data for the following scenario. Patient i with observed
characteristics xi seeks treatment from physician j, who then decides upon treat-
ment choice, di = 0, or di = 1. The consequence is outcome, u0

i or u1
i , depend-

ing upon the choice di . The conditional average treatment effect (CATE) is
¿(x)=E{u1

i −u0
i |xi =x}. As Holland (1986) emphasizes, the pair {u0

i , u1
i } are po-

tential outcomes only—in practice, we observe only udi
i and not u

d ′
i

i when d ′
i �=di .

Notice that we can view randomized trials and perfect experts as two extreme ways
to learn from data. RCTs provide data sets where the decisions are by construc-
tion random, and, hence, with enough data, we can construct estimates of the
CATE ¿(x), which in turn can be used to optimally treat a patient by setting di =1
iff ¿(xi)�0.

In contrast, suppose we have a perfect decision maker who set di =1 iff u1
i �u0.

Like the Roy model, since we observe only the optimal choice, without additional
assumptions, the counterfactual return is not observed, and hence the CATE
cannot be estimated. However, the data is very informative. In fact, one goal of
the literature on pattern recognition (Devroye et al. 1996) is to take such data
and build a decision function d*(x). As Devroye et al. (1996) discuss in section
6.7, one needs less data to construct d*(x) from a perfect decision maker than to
construction the CATE using regression techniques. In other words, if the goal
is simply to get the best decisions, then having data with good decisions is more
useful.

Section 5 discusses the human capital approach that combines both ideas. The
starting point is the contrasting views of experts (Kahneman and Klein 2009).
An expert is an individual who can make high-quality decisions very quickly. For
example, something as common-place as driving requires the ability to process
and react in real time to a complex stream of information. Even if one is not
an “expert driver,” driving requires an amazing combination of skills. In the
context of medical decision making, the first step in our procedure is to suppose
that physicians are experts, hence there is a positive relationship between their
decision and whether the patient is better off getting treatment. Using machine
learning 101 (the logistic regression; see Hastie et al. 2009), we can use the full
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data set to determine the probability that a patient with characteristics x gets
treatment, given by ´(x)=E{di |x}.

The probability ´(x) is the familiar propensity score. However, the interpreta-
tion here is quite different than in the econometrics literature, where it has been
controversial.4 The difficulty with estimating the CATE when the feature space
X is high dimensional is that it is not clear how to create groups within which the
treatment effect is relatively constant. Here we are using experts for dimension
reduction that then allows one to apply the results from Rosenbaum and Rubin
(1983). In section 4, I show that one can provide a simple, decision theoretic
model to justify this approach.

The second step entails estimating the CATE as a function of the propensity
score. Here we are relying upon the second feature of expert decision making.
Given that the acquisition of human capital is expensive, this implies that deci-
sion making is imperfect. Within the context of the simple model, the choice of
action conditional upon the propensity score is assumed to be noisy. It is quite
common to suppose that physician practice style is represented by a one dimen-
sional fixed effect (e.g., Chandra and Staiger 2007). In the context of this model,
we characterize physician decision making as two dimensional, where one dimen-
sion is the sensitivity of decision to the propensity score, which in turn can be
interpreted as decision-making skill.

In section 6, I discuss two papers that use this approach to study the decision-
making skill of physicians treating heart attacks and assisting in childbirth. In
that data, we have physician identities, and hence we can directly test whether
there is variation in decision-making skill. In Currie and MacLeod (2017), we do
indeed find that physicians who exhibit less sensitivity to patient conditions have
worst outcomes on average, consistent with the hypothesis of poorer information.
In Currie et al. (2016), we have a quite a different result. There we find that the
CATE does not change sign with the propensity score—namely the evidence is
consistent with the hypothesis that heart attack patients are always better off with
the most invasive procedures. In that case, variation in treatment is associated with
non-medical characteristics of the patient.

The final section of the paper has some concluding remarks and suggestions
for future research.

3. The Rubin–Holland model

In this section,5I review the well-known Rubin–Holland model outlined by Hol-
land (1986) and explicitly link it to optimal decision making.6 The question is

4 See Smith and Todd (2005) and the rejoinders.
5 Xuan Li did the background research on the effects of the psychiatric drugs. After the paper was

accepted, we learned of the more comprehensive study by Cipriani et al. (June 8, 2016) that
comes to similar conclusions.

6 See Imbens and Rubin (2015) for a comprehensive review of the approach and the historical
background. See also Freedman (2006).
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how to use evidence from an experiment or observational data to make better de-
cisions. I will reiterate the basic point in Holland (1986) that measuring a causal
effect requires making some untestable assumptions. In practice, these assump-
tions are typically implicit, rather than explicit, which in turn can lead to overly
strong claims in some cases (see Deaton 2010).

We begin with a universe of individuals whose characteristics are described by
a compact set X ⊂�n. For example, this might be all persons in a country in the
year 2000, or all individuals who had a fever last year. Individuals may also be
firms or countries, though for the current discussion we can think of them as a
collection of persons denoted by:

U ={i ∈P|xi ∈X},

where xi is the characteristic of individual i and P denotes the universe of all
possible individuals. Here I deviate slightly from Holland, where the primitive is
typically the set P. The reason is that the external validity of any experiment is
defined by the set of persons for whom the results are valid. These individuals
are typically not listed but described by features such as race or where they live.
Notice that this formulation includes the special case in which each person is a
unique point in X .

For each person i, we would like to know for each choice di ∈{1, 0}, the set of
potential outcomes:{(

xi , u1
i , u0

i

)
|i ∈U

}
,

where u1
i , u0

i are the outcomes for choices 1 and 0, respectively. These are potential
outcomes because the choice is made at a given date, with payoffs realized in the
future, and hence for each unit we can at best observe u1

i or u0
i , but not both.

I maintain throughout the stable unit treatment value assumption (SUTVA)—
the decision for unit j �= i does not affect the potential outcomes for unit i. The
average treatment effect (ATE) of choice 1 is given by:

¿ATE =E
{

u1
i −u0

i |i ∈U
}

.

This is the parameter estimated with a randomized control trial (Imbens and
Rubin 2015). One procedure to measure ATE is as follows. Randomly select from
U 2n individuals, who are randomly assigned to group 1, U1, and group 0, U0.
This generates data, Data(n) = {xi , udi

i |i ∈ U0 ∪ U1}, where di = 1 if i ∈ U1 and
di = 0 if i ∈ U0. The point here is that Data(n) cannot contain both potential
outcomes for the same unit, but it can be used to compute an estimate of average
treatment effect:

¿̂ATE (Data(n))= 1
n

{ ∑
i∈U1

u1
i − ∑

i∈U0

u0
i

}
.
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When the assignment is random (xi ⊥⊥di), then we have the well-known result:

Proposition 1. If units are randomly assigned to choices 1 and 0, and the stable unit
treatment value assumption is satisfied, then the average treatment effect satisfies:

¿ATE =E
{

¿̂ATE (Data(n))
}

= limn→∞¿̂ATE (
Data(n)

)
.

Proof. We follow Deaton (2010). First:

E
{

¿̂ATE (Data(n))
}

= 1
n

{ ∑
i∈U1

E{u1
i |di =1}− ∑

i∈U0

E{u0
i |di =1}

}
,

=E
{

u1
i |di =1

}
−E

{
u0

i |di =0
}

,

= limn→∞¿̂ATE (Data(n)).

Next observe that:

E
{

¿̂ATE (Data(n))
}

=E
{

u1
i |di =1

}
−E

{
u0

i |di =0
}

,

=E
{

u1
i |di =1

}
−E

{
u0

i |di =1
}

,

+E
{

u0
i |di =1

}
−E

{
u0

i |di =0
}

.

Observe that by SUTVA and random assignment we have that the final line is zero.
Random assignment also implies that the expected value of a potential outcome
(observed or not) is not affected by the assignment. Hence we have:

limn→∞¿̂ATE (Data(n))=E
{

u1
i |di =1

}
−E

{
u0

i |di =1
}

,

=E
{

u1
i −u0

i |di =1
}

,

=E
{

u1
i −u0

i |i ∈U
}

,

= ¿ATE. ��

Though quite simple, this result nicely illustrates the power of RCTs—under
the appropriate assumptions they allow for the measurement of the average treat-
ment effect for a population. There is a large literature on constructing bounds
to ¿ATE given finite data from an RCT. Our concern here is not with the imple-
mentation details for an RCT but with the problem of making decisions using
observational data.

The first condition, ¿ATE =E{¿̂ATE (Data(n))}, is called the ignorability condi-
tion. It means that, regardless of the sample size, the mean is an unbiased estimate
of the treatment effect. However, this is no longer true for selected subsamples,
particularly subsamples chosen as a function of xi . The literature on estimating
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TABLE 1
Sales of SSRI drugs and mood stabilizers in the US

Drug type: SSRI Mood stabilizer

Lexapro (Forest Abilify (Otsuka Lamictal
Drug name: Laboratories) Zoloft (Pfizer) Pharmaceutical) (GlaxoSmithKline)

Sales Rank Sales Rank Sales Rank Sales Rank

2003 965,666 34 2,580,509 5 364,546 88 582,281 56
2004 1,551,230 17 2,622,801 5 747,400 47 780,614 43
2005 1,849,528 13 2,561,069 6 1,098,379 29 1,031,307 34
2006 2,098,794 10 1,772,599 15 1,417,106 24 1,326,844 26
2007 2,304,364 9 175,209 170 1,781,562 15 1,717,429 17
2008 2,412,048 11 2,371,795 12 1,539,101 19
2009 2,334,422 13 3,083,351 6 498,599 73
2010 2,483,391 12 3,514,265 6 326,331 101
2011 2,835,216 18 5,032,032 4
2012 5,602,876 2
2013 6,293,801 1

Patent expiration March 2012 June 2006 October 2014 Mid 2008

NOTE: Sales in the US in $000.
SOURCE: drugs.com/top200.html

treatment effects has for the most part focused upon the problem of inferring
¿ATE as a function of different assignment mechanisms. In many cases, as both
Deaton (2010) and Heckman (2010) observe, one may also be interested in the
treatment effect for subpopulations of X .

For example, consider the problem of choosing a drug for the treatment of
depression. In order for a company to sell a drug they have patented, it must
go through trials with human subjects. Successful drugs provide a great deal of
revenue to companies during the life of the patent, as we can see in table 1. Thus,
they have a large financial incentive to have a successful trial and use the results
of the trial to direct physicians on how to use a new drug.

We can view a trial as having three outcomes, ui ∈ {V , 0, − L}, where V > 0
is to feel well, 0 is to be depressed and −L < 0 is to commit suicide. The target
populations are individuals who are currently depressed, denoted by X D. The
goal of treatment is to obtain the outcome ui =V. The difficulty is that, in order
to get approval to use human subjects, one cannot enroll patients into the study
that are at high risk of suicide, but rather the subset of patients that are depressed
but not at risk of suicide:

X̄
D =

{
x ∈X D|Pr [ui =−L|xi =x]�0

}
.

It is worth highlighting the fact that the drugs in table 2 may elevate the risk
of suicide for adolescents, but, by construction of the study, these subjects are
excluded from these trials. Yet, once these drugs are approved, psychiatrists are
free to prescribe them as they wish, including prescribing them to adolescents
(which is very common).
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Second, one needs an instrument to measure the outcome of the trial. Since
the trials are over relatively short periods, these outcome measures are at best
proxies for the long-term outcome (such as death by suicide). Such instruments
are performance scores denoted by yi . Again, one can measure only the outcome
of the chosen treatment and not both potential outcomes. The extended Rubin–
Holland model is concerned with measuring both the performance scores and the
outcomes: {

xi ,
{

y1
i , y0

i

}
,
{

u1
i , u0

i

}}
i∈U

.

In the case of depression, drug researchers use the Montgomery–Åsberg Depres-
sion Rating Scale (MADRS), Hamilton Rating Scale for Depression (HAMD)
or Children’s Depression Rating Scale-Revised (CDRS-R) to produce a score
before and after treatment, yi and ydi

i .7

We then set:

1Scoretreat =y1
i −yi ,

1Scoreplacebo =y0
i −yi .

The average treatment effect is then defined by:

Relative Score Reduction (RSR)=
ˆ1Scoretreat − ˆ1Scoreplacebo

ˆ1Scoreplacebo
,

where the hat refers to the population means. The results from a number of
studies looking at Lexapro and Zoloft are reported in tables 2 and 3.8 The average
treatment effect is reported in the column RSR. The RRR column is computed
in the same way using the fraction of individuals whose depression rate is reduced
by 40%–60%.

The decision to prescribe a drug is based upon the trials such as the ones in
tables 2 and 3. In general the point estimates are all positive. This leads practition-
ers to prescribe the medication because they believe that credible RCTs suggest
the treatment works. Yet, as Ludwig et al. (2009) observe, these results lack ex-
ternal validity because individuals at risk of suicide must, for ethical reasons, be
excluded from the studies.9

7 See Cusin et al. (2010).
8 Studies looking at Lexapro are Lepola et al. (2003), Wade et al. (2002), Burke et al. (2002), Pigott

et al. (2007), Azorin et al. (2003), Bech et al. (2004), Ninan et al. (2003), Llorca et al. (2005),
Ventura et al. (2006), Findling et al. (2013), Emslie et al. (2009), Wagner et al. (2006).Studies of
Zoloft include Ventura et al. (2006), Stahl (2000), Fabre et al. (1995), Olie et al. (1997),
Schneider et al. (2003), Wagner et al. (2003), Donnelly et al. (2006) and March et al. (1998).

9 Ludwig et al. (2009) use observational data and the fact that variation in the way the drugs are
priced and distributed affects the level of SSRI usage. Using population level measures of suicide
rates, they find that an increase in the class of selective serotonin reuptake inhibitors of 1 pill per
capita (12% of 2000 sales levels) reduces suicide by 5%.
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TABLE 3
Results from randomized controlled trials for Zoloft (Sertraline)

No. No. Dosage RSR RRR
Study Citations treatments placebo Age (mg) Duration (p-value) (p-value)

Ventura et al. [2007] 51 85 79 18–80 50–200 8 weeks 0.27 0.34 (0.07)
Stahl et al. [2000] 190 108 108 18–75 50–150 8 weeks 0.27

24 weeks 0.41
Fabre et al. [1995] 156 95 91 18–75 50 6 weeks 0.29

92 100 0.32
91 200 0.54

Olie et al. [1996] 19 129 129 18–70 50–200 6 weeks 0.48 0.57 (0.06)
Schneider et al. [2014] 143 371 376 � 60 50–100 8 weeks 0.12
Wagner et al. [2003] 136 189 187 6–17 50–200 10 weeks 0.17 0.17 (0.05)
Donnelly et al. [2006] 15 103 106 12–17 100 10 weeks 0.18 0.28 (0.07)
March et al. [1998] 425 92 95 6–17 200 4 weeks 1 0.43 (0.07)

NOTES: There are many RCTs that assign subjects to different treatment groups without placebo
control. Here I include those RCTs in which an explicit placebo group is assigned. Google Scholar
citations up until February 20, 2015, are reported. RSR stands for relative score reduction and RRR
stands for relative response rate.

TABLE 4
Suicidality from a meta-study of RCTs by American
Psychiatric Association

Drug–placebo difference
in cases of suicidality/

Age range 1,000 patients

< 18 14 additional cases
18–24 5 additional cases
25–64 1 additional case
� 65 6 fewer cases

NOTE: Results are from RCTs on all antidepres-
sants for patients with Major Depressive Disorder
(MDD), Obsessive Compulsive Disorder (OCD) or
other psychiatric disorders.

Moreover, the outcome of these trials is an index whose value does not have
an obvious economic interpretation. That is to say, there is no obvious weighting
rule that, for example, includes the loss in value due to completed suicides; hence,
the average treatment effect may not reflect the optimal choice. We also know that
SSRIs may have significant side effects, and hence any treatment effect should
include values associated with illness caused by the drug.10

The American Psychiatric Association looked at the question of how treatment
affects suicide rates. The results for different age groups are shown in table 4. As
one can see, the success of treatment for younger patients is definitely mixed.
In particular, for younger patients, these drugs may increase the risk of suicide,
and they are now packaged with “black box” warnings to this effect. Given that

10 For the FDA warnings on Zoloft and Lexapro, go to fda.gov/Drugs/DrugSafety and search for
the drug-specific information.
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TABLE 5
Patient characteristics (X )

Appropriateness for surgery: All Low High

Female 0.40 0.53 0.27
Age 69.91 80.69 59.65
White 0.79 0.83 0.76
Black 0.08 0.07 0.10
Hispanic 0.10 0.08 0.11
Medicaid 0.04 0.02 0.06
Medicare 0.66 0.88 0.38
Private insurance 0.21 0.07 0.39
Self-pay or other 0.09 0.03 0.17
Morbidity index 0.45 −1.33 2.02
Subsequent AMI 0.05 0.12 0.003
No.diagnoses 8.20 8.98 7.16
Arrhythmia 0.26 0.32 0.20
Hypertension 0.43 0.33 0.56
Congestive heart failure 0.32 0.51 0.11
Peripheral vascular disease 0.05 0.05 0.04
Dementia 0.03 0.09 0.00
Cerebral vascular disease 0.07 0.14 0.01
COPD 0.16 0.20 0.09
Lupus 0.02 0.03 0.01
Ulcer 0.01 0.01 0.00
Liver disease 0.02 0.03 0.00
Cancer 0.06 0.10 0.02
Diabetes 0.21 0.18 0.22
Kidney disease 0.15 0.28 0.03
HIV 0.003 0.004 0.002
N 658,553 217,323 223,853

SOURCE: Table 2, Currie et al. (2016)

suicide claims many individuals by age 25, the positive effect at that age may be
due in part to the selection effect of suicide!

Currently, it is very difficult to determine whether a patient with certain char-
acteristics x∈X will benefit from treatment. The question then is how to use these
results to guide decision making in practice. For simplicity, suppose that individ-
uals are one of three types. For type A, given by x ∈X A treatment with the drug
cures the depression with certainty, resulting in the payoff V . Similarly, for a type
B person, x ∈ X B, treatment has no effect, while for type C, x ∈ X C, the result is
suicide and a cost of −L. Let pt, t ∈{A, B, C} be the population probabilities for
each type. Under the hypothesis that the physicians cannot tell which type they
face, then the appropriate criterion for treatment is the average treatment effect:

¿ATE =pAV −pC L.

This example illustrates the challenge one faces when using an RCT to evaluate
treatment. First, neither the benefit (V ) nor the cost (L) from the potential out-
comes can be directly measured. Hence, techniques such as those in Hirano et al.
(2003), used to obtain efficient estimates of the average treatment effect cannot be
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used. Second, there is the obvious sample selection problem because individuals
are restricted to have characteristics in X A ∪X B, those not at immediate risk from
suicide.

An alternative approach focuses upon evaluating decision rules rather than
the treatment effect. Specifically, can we identify the set of characteristics X +
such that ¿(xi) > 0, ∀xi ∈ X +? This in turn determines a decision rule that im-
proves upon a rule based upon the ATE by allowing choice to vary with observed
characteristics. We now turn to this question.

4. The evaluation of decision rules

The evaluation of drugs for the treatment of depression illustrates some of the
challenges one faces when using randomized trials to address a substantive issue.
In addition to the fundamental problem of causal inference (Holland 1986), due
to the impossibility of observing both potential outcomes for the same unit, it is
typically also the case that one cannot directly measure the outcome of interest.
For example, in the case of depression, one observes only a proxy for the person’s
mental state. In terms of policy, it is not obvious how to aggregate such measures
over a large population for purposes of providing general therapeutic advice, such
as the recommendation of an SSRI as the first drug to try for treatment.

An alternative approach would be to focus upon decision rules rather than the
treatment effect. In this section, I briefly discuss the evaluation of decision rules
and how they compare to measures of the treatment effect. If we expect treatment
to have the same sign for the full population, say we want to know the average
effect of a vaccine that will be delivered to the whole population, then it makes
sense to use evidence from a sample of the whole population to obtain a more
precise estimate of the effect (as in Hirano et al. 2003). Heckman (2010, p. 364)
notes in passing one may also be interested in the voting criteria. Under this rule,
we ask what fraction of the population would be better off with treatment. He
mentions that this approach is used in political economy and does not discuss it
further. It turns out that this is also the approach used in the pattern recognition
and machine learning literatures to evaluate the quality of the decision rules.11

Moreover, as Devroye et al. (1996) observe (sec 6.7), measuring decisions is easier
than measuring treatment effects.

More precisely, given a unit i ∈ U , we can define two random variables that
are unobserved but can be used to define the performance of a decision rule. The
realized treatment effect:

¿i =u1
i −u0

i ,

and the best treatment choice:

11 See Devroye et al. (1996) and Hastie et al. (2009).
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di =
{

1, if ¿i �0,
0, if not.

Neither of these variables can be directly observed at the time choice is made.
What we have are the observed characteristics of the individual, xi , from which
we can define the two parameters that are potentially estimable from data. The
first the conditional average treatment effect:

¿(x)=E {¿i |i ∈U , xi =x}, (1)

and the probability that treatment is effective:

´(x)=E {di |i ∈U , xi =x}. (2)

Ultimately, given that the characteristics of the unit i, xi , are observed before
treatment, then we are interested in using data, either from an RCT or observa-
tional data, to choose a decision function:

d : X →{0, 1}.

In the learning literature, the norm is to evaluate decision functions using a loss
relative to the best that can be obtained. There are two criteria one can use.
The first is the “economic” criterion that supposes that the treatment effect is
measured with transferable utility. In that case, the welfare loss of a decision
function is measured by:

WL(d)=E {max {¿i , − ¿i} |i ∈U}−
∫

x
¿(x)(2d(x)−1)d¹(x). (3)

The welfare lost is the difference between the maximum welfare if one chooses
the most effect treatment for each individual less the conditional treatment effect
for each x∈X determined by the decision rule, where ¹(x) is the distribution over
characteristics. Clearly, WL(d)�0 for all decision rules. The second criterion is
the Bayes risk, defined by:

L(d)=Pr{d(xi) �=di |i ∈U}. (4)

It measures the frequency with which a decision rule varies from the best rule, as
opposed to a rule that takes into account the implicit cost of deviating from the
optimal choice.

Associated with each rule are natural optimal decision rules. For the welfare
loss, we have:

Proposition 2. For every measurable decision rule d(. ), we have WL(d)�WL(dcate),
where:

dcate(x)=
{

1, if ¿(x)�0,
0, if not.
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The result follows immediately from an inspection of (3). Thus, if we are able
to estimate the CATE ¿(x), then a decision rule based upon this will provide
the lowest expected loss relative to the theoretical maximum. In particular, if the
sign of ¿(x) changes over the set X , then the optimal rule should vary with x,
and decision making based solely upon the average treatment effect cannot be
optimal. In the case of the Bayes risk criterion, we have:

Proposition 3. For every measurable decision rule d(. ) we have L(d) � L(dB),
where dB is the optimal Bayes rule defined by:

dB(x)=
{

1, if ´(x)�1=2,
0, if not.

This result follows from theorem 2.2 in Devroye et al. (1996). In this case, if the
probability that treatment 1 is optimal is greater than 1/2, then the optimal Bayes
rule is to choose 1. This is exactly Heckman’s (2010) voting rule. One chooses
the decision that is more frequently correct. There are some cases in which the
criteria lead to the same choice. The first of these is when, conditional upon x,
there is always an optimal choice:

Proposition 4. Suppose L(dB) = 0 and ¿i is bounded, then WL(dB) = 0 and the
optimal CATE rule and Bayes differ at most on a set of measure zero.

If L(dB)=0 then this implies that almost everywhere ´(x)∈{0, 1}, and hence
there is a best decision for almost every x∈X . From this it follows that WL(dB)=
0.

This result is useful because when we are in a situation where there is clearly a
correct choice for each x ∈X , then the size of the treatment effect is not relevant
for setting the decision rule; only the sign is relevant. For example, this provides
some guidance regarding the use of proxy variables in an RCT. If a drug helps
relieve depression if and only if the patient has a better Montgomery–Åsberg
Depression Rating (MADRS) or Hamilton Rating (HAMD), then the results
from an RCT for SSRIs can be used in clinical practice to recommend treatment,
even though the value of treatment is difficult to measure.

In many cases, there is no clear, unambiguously correct choice. This can oc-
cur when there are unobserved factors that affect the CATE, but they are not
contained in the vector of observed person characteristics, xi . Even so, there is
a case in which the optimal rule based upon the treatment effect and the Bayes
optimal rule imply the same optimal choice. Suppose that the distribution of ¿i is
symmetric around its expected value ¿(x) for all xi =x∈X , and Pr{¿i =¿(xi)}=0
(there is no mass at ¿(x)). Then Pr{¿i < ¿(x)}=Pr{¿i > ¿(x)}=1=2, and we have
that ¿(x)�0 if and only if ´(x)�1=2. Thus:

Proposition 5. Suppose that the treatment effect ¿i is symmetrically distributed
around ¿(x), with no mass at ¿(x), then the optimal CATE rule (dCATE) and the
optimal Bayes rule (dB) are the same almost everywhere.
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Finally, the two approaches represent contrasting approaches on how to learn
from data. Notice that while we can never directly observe the treatment effect ¿i ,
we can observe decisions made by agents and the consequence of these decisions,
either udi

i or ydi
i . Randomized control trials represent one extreme, where the

decision di is explicitly randomized so that with sufficient data we can estimate
¿(x) from observations of outcomes. In that case, the decision rule itself contains
no information.

In contrast, consider the other extreme case in which the optimal Bayes risk
is zero—L(dB) = 0, and we have data from perfect expert decision makers who
choose di = 1 iff ¿(x) � 0. In that case, we never observe the counterfactual in-
efficient choice, and hence have no information concerning the treatment effect.
However, we are in a situation in which we can learn the decision rule. In this case,
as MacLeod (2016) discusses, with enough observations, it is possible to estimate
the optimal decision rule for all x∈X , even though measuring the treatment effect
is impossible.

The traditional approach in empirical labour economics is to view any correla-
tion between the treatment effect and choice as creating a threat to identification
(Angrist and Krueger 1999). It is worth highlighting the point that the large lit-
erature on pattern recognition and machine learning takes exactly the opposite
view. The more tightly connected choice is to the optimal treatment, the lower
the Bayes risk, which in turn improves the ability of algorithms to learn the best
choices from training data. In the next section, I discuss some recent work that
combines these viewpoints and illustrate how we can use a mixed approach to
learning on how to improve observed decision making in medicine.

5. The human capital approach to inference

This section outlines what I call the human capital approach to inference. The
goal is to provide a way to lever expert knowledge, or human capital, to estimate
a version of the CATE that in turn can lead to improvements in decision making.
The standard approach to identify CATE is knowledge of the environment that
allows one to put some structure upon the assignment to treatment groups. The
instrumental variables approach, such as Angrist et al. (1996), assumes that there
is some shock in the environment that creates a random assignment. Vytlacil
(2002) and Heckman (2010) observe that the Roy model can be interpreted as a
valid estimate of the returns to changing sectors by viewing moving costs between
sectors as an exogenous shock that is independent of the treatment effect. Athey
and Imbens (2015) discuss the use of machine learning techniques to measure the
CATE but still rely upon the exogeneity of the treatment effect (as in theorem 1).

Here I begin with an environment with many heterogeneous units and at least
two (but not an infinite number of) agents who carry out the assignment to
treatments. The precise context we have in mind is a physician j ∈ J treating
patient i ∈ Uj with condition xi . The set Uj indexes the patients for physician j,
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with the feature that Uj ∩ Uj′ = ∅ whenever j �= j ′ and ∪j∈J Uj = U. Matters are
much easier if we suppose that the distribution of xi for i ∈ Uj is given by ¹ for
all j ∈ J . This is a strong assumption, and we defer discussion of it to the end.
The job of the physician j is to choose treatment dij ∈{0, 1} as a function of the
observable conditions of patient i, given by xi ∈ X, where X is a finite set.12 In
the spirit of the SUTVA, I assume that physicians treat “in a bubble.”13 Namely,
their treatment decisions are fixed when they leave medical school. Epstein and
Nicholson (2009) provide some direct evidence in support of this assumption.

The problem is made more complex by that fact that the number of possible
conditions represented in the set X is potentially large. The purpose of medical
school is to teach students the best way to treat patients as a function of x ∈X so
that they make decisions that are close to optimal, which we suppose is given by
d*(x).

When we say that this decision making ability is human capital, this has two
implications. The first is that it is expensive to acquire. As I point out in MacLeod
(2016), this implies that decision making is imperfect but increasing with experi-
ence and the innate ability of the individuals. Even highly skilled individuals make
mistakes. These errors create random assignment from which we can determine
the treatment effect. The second implication is that even though physicians make
errors, they are not random. Millions of individuals are treated by physicians
each year with the expectation that treatment by a physician is better than the
alternative.

This implies that the allocation to a treatment is non-random. We can exploit
this fact and use a basic machine learning algorithm to organize the data before
attempting to exploit error to measure the CATE. More precisely, let us suppose
that Agent j ∈J has an unbiased noisy observation of the CATE (1):

¿ij(x)= ¿(x)− �ij , (5)

where �ij ∼N(0, ¾2
j ), where ¾2

j > 0 is constant for each doctor. A smaller variance
¾2

j corresponds to more diagnostic skill. I am assuming that the treatment effect
is on a log scale, so that ¿ takes values from (−∞, ∞). If training were perfect and
homogeneous, then we would suppose that ¾2

j �0. We begin with the hypothesis
that the quality of decision making among the j ∈J agents varies with the variance
¾2

j . There is quite a bit of evidence that this is the case. In the case of physicians,
there is a large amount of variation in practice styles that cannot be explained
by the condition of the patient, an observation that is often used to explain the
high cost of health care in the US, along with the underprovision of care in other
cases (Song et al. 2010).

12 Not only does this simplify the analysis but also it is true in practice since any information
reporting system has by construction only a finite number of possible x variables.

13 This is a direct quote from a physician, who said that after medical school his decision making
was independent of other physicians’ decisions.
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Let us suppose that we have a data set given by:

Data =
{{

xi , u
dij
i |i ∈Uj

}
|j ∈J

}
,

={Dataj |j ∈J}.
(6)

With this data we would like to answer two questions. First, do physicians vary in
quality of decision making? Second, what are the features of the better doctors? In
particular, we would like to offer specific guidance on how their decisions might
change to improve outcomes. We begin with the pattern recognition or machine
learning approach to thinking about a decision. Consider physician j. Their job
is to divide patients into two groups, X 1

j and X 0
j , and then carry out the decision:

dj(xi)=
{

1, xi ∈X 1
j ,

0, xi ∈X 0
j .

What one learns in medical school are patient conditions that determine the sets
X 1

j and X 0
j —the problem of pattern recognition is to take the observed data to

reconstruct these sets. The assumption that a doctor observes a noisy signal of the
treatment effect dramatically complicates the problem. Given the learning process
(5), then the set of conditions where dj(x)=1 is given by conditions x ∈X 1

j such
that the physician believes the best course of action is to treat. This set includes x
if there is a chance that ¿ij(x)>0. Since �ij is normally distributed, then its support
is unbounded and we have:

X 1
j ={

x ∈X | for some i, ¿ij(x) = ¿(x)− �ij �0
}
,

=X with prob 1, as #U →∞.

In other words, with a noisy signal, there is always a chance a physician might
recommend di = 1, and X 1

j = X 0
j = X for all j ∈ J ! Hence, for each x ∈ X , the

probability of treatment is in (0, 1).
The human capital approach to inference used here relies on a few assumptions.

First, let us suppose that for a randomly selected individual the probability of
using physician j is ½j . Suppose that for this individual the CATE is ¿, then the
probability of getting treatment 1 is:

e(¿)=Pr [di =1|¿],

= ∑
j∈J

½jF
(

¿

¾j

)
.

(7)

The assumption that decision making is imperfect implies that ¾j > 0, and hence:

e′(¿)= ∑
j∈J

½j f
(

¿

¾j

)
=¾j > 0. (8)

This implies a one-to-one relationship between the probability of treatment and
the treatment effect ¿. This function is the familiar propensity score. Since the
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score is strictly increasing with ¿, then it becomes a balancing score in the sense of
Rosenbaum and Rubin (1983) because conditioning upon e allows for a consistent
estimation of ¿(x). The first step is to construct the population propensity score
as a function of the data:

´(x)=E[di |xi =x].

This is connected to the propensity score via ´(x)= e(¿(x)). We have:

Proposition 6. Suppose that the SUTVA is satisfied, e′(¿) > 0 for all ¿ ∈�, ´(x)=
E{di |xi =x} and ¯́ =´(x̄), then if:

¿̄ =E
{

u1
i |di =1, ´(xi)= ¯́

}
−E

{
u0

i |di =0, ´(xi)= ¯́
}

,

it follows that ´(xi)= e(¿̄) for all xi ∈{x|´(x)= ¯́} and ¿̄ = ¿(xi), the CATE at xi.

Proof. Under the SUTVA, the propensity score is a balancing score, and from
theorem 4, Rosenbaum and Rubin (1983), ¿̄ is the CATE at e(¿̄). The fact that
e′ > 0 implies that it is unique, and hence CATE = ¿̄. ��

We are making two key assumptions. First, the probability of treatment in-
creases as a function of ¿ for each physician, but it is not perfectly correlated.
This is the essence of the human capital approach—we suppose that doctors on
average respond correctly to patient condition. Second, we have assumed the al-
location of patients to doctors is independent of the treatment effect. This is not
strictly necessary since e′(¿) is strictly positive. All that is necessary is that the
proportions do not change too quickly with ¿.

We can perform some additional robustness checks. In this setup, we are assum-
ing that the physicians are making errors conditional upon the information they
have in xi . If that is true, then if we compare two physicians, and ¾2

j >¾2
j′ , when j ′ is a

better doctor, her propensity score rises more quickly. With sufficient data, we esti-
mate ´j(x)=´(x, ¾2

j )≡F ( ¿(x)
¾j

), the Agent’s probability of treatment, by restricting
the sample to a single agent j. The expected performance of Agent j is given by:

Qj(¾2
j )=

∫
x∈X

´j(x)¿(x)− (
1−´j(x)

)
¿(x)d¹(x)

=
∫

x∈X
¿(x)

(
2´j(x)−1

)
d¹(x).

A simple computation implies:

Proposition 7. The Agent-specific propensity scores and performance satisfy:

@´j(x)
@¾j

<0, iff ¿(x) > 0,

@Qj

(
¾2

j

)
@¾j

<0.
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These results follow immediately from differentiating the respective expres-
sions. Since ´j(x) = 1=2 iff ¿(x) = 0, this implies that for ´j(x) > 1=2, increasing
the quality of information (lower ¾j) results in a higher probability of treatment,
with the opposite occurring for´j(x)<1=2. Thus, the quality of information has an
ambiguous effect upon choice. In contrast, increasing the the quality of informa-
tion (lower ¾j) always increases total performance.

What we have done is provide some structure to the well-known propensity
score model that allows us to interpret a propensity score as a decision rather than
a self-selected treatment. The result relies upon two features of human capital:

1. Agents j ∈ J are skilled in the sense that the propensity score to treat should
rise with the treatment effect.

2. Human capital is expensive to acquire, and hence decision making is imper-
fect, which in turn implies that conditional upon the propensity score we are
observing both potential outcomes.

6. Example: Medical decision making

A common approach to the estimating a treatment effect involves the creation
of well-defined groups, within which assignment to treatment and control is
independent of individual characteristics. In contrast, here it is assumed that
agents are making decisions to treat based upon their own perception of the effi-
cacy of treatment. If their decisions are error free, then we would observe a great
deal of homogeneity in their decisions. Moreover, if choice is perfect, then it is
impossible to estimate the treatment effect because we observe only the optimal
choice, not the counter-factual one. However, the fact that experts do make mis-
takes creates heterogeneity in treatment that we can use to estimate the treatment
effect. In this section, I discuss two papers that apply these ideas to physician
decision making.

In both cases, it is assumed the physician decides whether to treat a patient with
an invasive procedure. In the case of heart attack patients, this is angioplasty or
catheterization, while in the case of birth it is the choice between a natural delivery
or a C-section. We begin by estimating ´(x), the population level probability that
a patient with characteristics xi is treated intensively.14 This can be viewed as a
classic problem in machine learning. Given Data, can we predict what will happen
to a patient with characteristics xi? As it turns out, the standard logit model is a
very good machine learning model:15

ˆ́(x)=Pr[di =1|xi =x]=F (0x), (9)

14 In the case of a heart attack patient, an invasive procedure is either angioplasty or
catheterization (ICD codes 00.66, 36.0.., 37.22 or 37.23). For delivery of a child, a C-section is
the invasive procedure.

15 See chapter 4, Hastie et al. (2009).
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where di = 1 indicates an invasive procedure, F is the logit function, and 0 is a
vector of parameter estimates. We then divide patients into two groups—high
and low appropriateness for an invasive procedure:

U H =
{

i ∈U | ˆ́(xi)�pH
}

,

U L =
{

i ∈U | ˆ́
(
xi

)
�pL

}
,

where pH and pL are chosen to create approximately three groups of individuals
of equal size. In general, the index ˆ́(x) provides a way to rank patients along one
dimension based upon how they are treated in the market.

The next issue is whether there is variation in the decisions made by the doctors.
We estimate this by defining an index for patient condition s(x)∈ (−∞, ∞) by:

ˆ́(x)=F (s(x)).

For each physician, we estimate the individual behaviour for i ∈Uj via:

ˆ́j(x)=Pr
[
di =1|xi =x, i ∈Uj

]=F
(
®jt +¯jts(x)

)
, (10)

where {®jt, ¯jt} is a physician’s practice style at date t. If a physician behaved
exactly the same as his or her colleagues, then the estimated values should not be
significantly different from {0, 1}.

In order to evaluate the effect of practice style upon the patient, we construct
a measure of performance using observed outcomes for the each patient in the
high and low categories:

ûH
j = 1

nH
j

∑
i∈Uj∩U H

ui , (11)

ûL
j = 1

nL
j

∑
i∈Uj∩U L

ui , (12)

where nl
j =|Uj ∩U l | is the number of patients served by physician j in population

U l, l ∈{L, H}. We then ask, do these measures vary systematically with physician
practice style? Notice that an increase in ®j leads to more invasive procedures for
all patients, while an increase in ¯j leads to fewer invasive procedures for low-risk
patients and more invasive procedures for high-risk patients. Let us now turn to
the two applications.

6.1. Heart attack treatment
Currie et al. (2016) use hospital discharge data from all heart attack patients in
Florida from 1994 until 2014. The question we ask is whether there is variation in
physician decision-making quality, and whether this is related to outcomes. We
restrict the sample to heart attack patients who arrive at a hospital through the
emergency room (ER) and are treated by a cardiologist. The result is a sample
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TABLE 6
Fraction of estimated provider coefficients that are
significantly different than ¯ =1 and ®=0.

Beta < 1 Beta = 1 Beta > 1 Total

Alpha < 0 0.028 0.138 0.010 0.176
Alpha = 0 0.069 0.527 0.0096 0.606
Alpha > 0 0.041 0.177 0.0007 0.219
Total 0.138 0.842 0.020

N = 658,553 patients

SOURCE: Table 5b, Currie et al. (2016)

with 658,553 patients (U ) treated by 2,929 cardiologists (J ) at 149 hospitals. The
set of patient characteristics (X ) is listed in the first column of table 5.

The index (9) is estimated using the data from teaching hospitals. This helps
ensure that the index is based upon a group of skilled physicians. The patients
for whom an invasive procedure is appropriate (U H ) are those with ˆ́(xi)�0.66,
while the low appropriateness patients (U L) are those with ˆ́(xi)�0.34, The mean
values of xij for each group are listed in columns 3 and 4 of table 5.

Next, for each physician j ∈ J , equation (10) is estimated. The first question
we address is whether there is evidence that providers deviate significantly from
the behaviour of physicians in accredited hospitals. These results are presented in
table 6. We can see that there is significant deviation from the mean behaviour in
the market. About 13% of the physicians are less sensitive to patient conditions
than the market mean, while 2% are more sensitive. The variation in the fixed
effect is greater, with about 22% of the sample with a propensity to treat invasively
regardless of the patient condition.

From these results, we learn that there is no consensus on how to treat these
patients. This variation implies that by comparing the outcomes between physi-
cians j ∈J we can learn what treatment styles are more effective because patient
with similar characteristics are receiving different treatments. Table 7 presents the
results from how variation in practice affects various outcomes for high and low
appropriateness patients (versions of equations [11] and [12]). What is interesting
is that more aggressive physicians get better outcomes. Also, low responsiveness
physicians get worse outcomes for the high appropriateness patients, while having
better outcomes for low appropriateness patients.

Taken together, these results suggest that, when judged from a purely medical
point of view, a more aggressive treatment of heart attack patients leads to bet-
ter outcomes. In general, we find that US-trained physicians are less responsive
and more aggressive, consistent with getting better medical outcomes. What is
interesting is that physicians from top US schools, while more aggressive, are
also more responsive. As one can see from table 5, one of the most important
factors signalling aggressiveness is the age of the patient. Thus, it would seem that
even though invasive procedures improve medical outcomes, for some patients,
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particularly older patients, some physicians are choosing to be less aggressive.
This is consistent with them taking into account factors other than the treatment
effect of an intervention.

6.2. Caesarean sections
There is a great deal of concern that Caesarean section (C-section) rates at Amer-
ican hospitals are too high. In order to help mothers make better decisions, Con-
sumer Reports (2016) provides advice on hospital choice and recommends low
C-section hospitals. Implicitly, they are making two assumptions. The first is that
doctors at low-C-section hospitals have uniformly low C-section rates. However,
while it is mechanically true that choosing a hospital with a low C-section rate
results in a lower expected rate for the mother, Epstein and Nicholson (2009) find
little relationship on C-section rates between physicians at the same hospital.

Second, the C-section rate recommendations that are used to evaluate physi-
cians and hospitals assume that it is for a low-risk pregnancy. Implicitly it is
assumed that physicians will perform a C-section whenever it is medically neces-
sary. Two questions remain. First, how should a mother decide if she is low risk
or not? Normally, it is the job of the physician to do this, not the mother. Second,
after a physician has been chosen and a preliminary evaluation has been carried
out, there is the issue of the quality of decision making in real time during the
labour and delivery process.

We already have strong evidence that physicians respond to financial incentives
(Chandra et al. 2012). In the specific case of C-sections, Currie and MacLeod
(2008) find that obstetricians are responsive to changes in medical liability—in
particular, when legal liability increases, obstetricians reduce their C-section rates
for the marginal cases. This result is consistent with Johnson and Rehavi (2016),
who find that when the mother is a physician, then she has a lower C-section
rate and a better outcome. Yet, as Chandra et al. (2012) observe, incentives alone
cannot explain all variation in practice style. A natural question is the extent to
which there is variation in the way physicians make decisions when incentives are
held fixed, and does this variation lead to variation in outcomes?

Currie and MacLeod (2017) address this question using the human capital
approach described above. They explore the quality of decision making using
information from 1.1 million births in New Jersey from 1997 to 2004. We are
able to match these births to 71 hospitals and 5,273 birth attendants. Since only
physicians carry out C-sections, we remove the 603 midwives from the sample.
For each delivery, we have a rich set of X measures. These are listed in table 8,
along with the estimated coefficients for equation (9). We run the model for the
full sample, as well as a sample of “good physicians”—those in the bottom 25th
percentile of having any adverse outcomes. One can see that the rankings are very
similar, with a correlation of 0.99.

This ranking shows that physicians rank xi ∈ X from different patients in
the same way. We also know there has been a secular increase in C-section rates
over time. The relationship between our index and the observed C-section rate
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TABLE 8
Estimation of ´(x).

All doctors Good doctors only

Coeff. SE Marginal effect Coeff. SE Marginal effect

Age < 20 −0.337 0.013 −0.075 −0.428 0.029 −0.095
Age � 25 & < 30 0.262 0.008 0.058 0.311 0.018 0.069
Age � 30 & < 35 0.434 0.008 0.096 0.483 0.017 0.107
Age � 35 0.739 0.009 0.164 0.840 0.018 0.186
2nd birth −1.347 0.007 −0.298 −1.448 0.015 −0.321
3rd birth −1.645 0.009 −0.364 −1.787 0.019 −0.396
4th or higher birth −2.140 0.012 −0.474 −2.317 0.027 −0.513
Previous C-section 3.660 0.008 0.810 3.885 0.018 0.860
Previous large infant 0.139 0.029 0.031 0.293 0.065 0.065
Previous pre-term −0.293 0.025 −0.065 −0.311 0.061 −0.069
Multiple birth 2.879 0.014 0.638 3.278 0.032 0.726
Breech 3.353 0.016 0.742 3.810 0.040 0.844
Placenta previa 3.811 0.054 0.844 3.843 0.116 0.851
Abruptio placenta 2.048 0.030 0.454 2.196 0.072 0.486
Cord prolapse 1.761 0.047 0.390 1.668 0.100 0.369
Uterine bleeding 0.026 0.035 0.006 0.259 0.099 0.057
Eclampsia 1.486 0.096 0.329 1.047 0.230 0.232
Chronic hypertension 0.745 0.025 0.165 0.754 0.060 0.167
Pregnancy hypertension 0.639 0.013 0.142 0.696 0.029 0.154
Chronic lung condition 0.064 0.014 0.014 0.110 0.032 0.024
Cardiac condition −0.121 0.020 −0.027 −0.175 0.042 −0.039
Diabetes 0.558 0.011 0.124 0.547 0.025 0.121
Anemia 0.131 0.018 0.029 0.203 0.043 0.045
Hemoglobinopathy 0.116 0.047 0.026 0.067 0.092 0.015
Herpes 0.461 0.024 0.102 0.558 0.049 0.124
Other STD 0.052 0.017 0.012 0.064 0.039 0.014
Hydramnios 0.616 0.018 0.136 0.645 0.042 0.143
Incompetent cervix 0.043 0.035 0.010 −0.119 0.093 −0.026
Renal disease −0.024 0.031 −0.005 −0.057 0.067 −0.013
Rh sensitivity −0.045 0.040 −0.010 −0.082 0.109 −0.018
Other risk factor 0.276 0.006 0.061 0.210 0.013 0.047
Constant −1.414 0.007 −0.313 −1.374 0.015 −0.304

No. observations 1,169,654 262,174
Pseudo R2 0.32 0.322

NOTES: The model also included indicators for missing age, parity and risk factors. The correlation
between eta estimated using the two different models is 0.99.
SOURCE: Table 1, Currie and MacLeod (2017)

is illustrated in figure 1. We can see that there is a strongly positive correlation
between our measure of risk of C-section with observed C-section rates. The
figure also documents the upward shift in C-section rates for all mothers, with
the largest increase occurring in the 0.5 to 0.9 region. Given the changes over
time, we allow estimated physician practice style to vary with time.

The next question is whether physicians vary systematically in the way they
treat patients. In Currie and MacLeod (2017), we provide a formal model of
physician decisions that provides a structural interpretation of equation (10).
Specifically, physicians who are better at diagnosis have a higher ¯jt. This is the
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FIGURE1 Shifts in probability of a C-section over time
SOURCE: Figure 1, Currie and MacLeod (2017)

case under the hypothesis that the index we construct accurately ranks patients
and that physicians make errors in their evaluation of patient condition. We will
be able to check this hypothesis by seeing if variation in ¯jt is associated with
variation in outcomes, as predicted by proposition 4. An alternative hypothesis
is that the physicians have better information than we have as outside observers.
In that case, we would expect the reverse—an increase in ¯jt implies less private
information, and hence worse outcomes. As we shall see, the data rejects this
alternative hypothesis.

In addition, we measure procedural skill by calculating the rate of any bad
outcomes among very low-risk births and the rate of bad outcomes among high-
risk births for each doctor and then take the difference between them. Taking the
difference in the incidence of bad outcomes between these two groups is suggested
by the model, in which it is the difference in skill in procedure C and in procedure N
that affects the physician’s choice. The rate of bad outcomes in each group proxies
for surgical skill because the vast majority of high-risk women get C-sections and
most very low-risk women do not. At the same time, because the very high-risk
and very low-risk groups are defined only in terms of underlying medical risk
factors, the measure is not contaminated by the endogeneity of the actual choice
of C-section within these risk categories. This measure also exhibits considerable
variation between doctors with a mean of −0.0493 (given that bad outcomes are
more frequent in high-risk cases than in low-risk cases) and a standard deviation
of 0.0646. The first percentile of this variable is −0.25, while the 99th percentile
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TABLE 9
Effect of physician decision making and surgical skill on P(C-section) and health outcomes

C-section risk: all OLS low OLS high OLS all TSLS low TSLS high TSLS

Dep. var.: C-section
Decision making 0.004 −0.011 0.018 0.000 −0.016 0.019

(0.002) (0.002) (0.002) (0.006) (0.005) (0.008)
Procedural skill difference 0.003 0.003 0.003 0.020 0.017 0.030

(0.002) (0.001) (0.002) (0.010) (0.008) (0.011)
R-sq./Chi-sq. 0.410 0.044 0.321 710797 15293 62526
Dep. var.: Any bad outcome
Decision making −0.008 −0.007 −0.009 −0.013 −0.013 −0.013

(0.002) (0.001) (0.002) (0.006) (0.007) (0.006)
Procedural skill difference −0.017 −0.008 −0.027 −0.058 −0.047 −0.072

(0.002) (0.002) (0.002) (0.006) (0.007) (0.006)
R-sq./Chi-sq. 0.020 0.016 0.023 6750 13635 1695

No. observations 968,748 469,170 499,578 968,748 469,170 499,578

NOTES: Standard errors clustered at the 3-digit zip code level. Regressions also include market price;
estimated C-section risk; indicators for African-American, Hispanics, race missing, education (less
than high school, high school, some college, missing), married, married missing, Medicaid, Medicaid
missing, teen mom, 25–34, 35 plus, smoking, smoking missing, male child, parity 2, parity 3, parity
4 plus and parity missing; month and year of birth indicators; indicators for 3-digit zip code and an
indicator for whether the birth was on a weekday. R-squared shown for OLS and Chi-squared shown
for TSLS.
SOURCE: Table 4, Currie and MacLeod (2017)

is 0.079. Again, we normalize this measure by calculating a Z-score for ease of
interpretation.

The effects of decision-making skill (from the estimated ¯jt in equation 10) and
our measure of procedural skill are presented in table 9. The top part of the table
reports the results of skill upon C-section rates. The formal model supposes that
the distribution of outcome variables x is the same for all doctors. We control for
this by also doing the analysis at the market level. In that case, we are identifying
market level variation in diagnostic skill to control for patient self-selection to
physicians. The TSLS results refers to these two-stage least squares estimates
that control for selection of patients to physicians at the market level. Notice
that an increase in decision-making skills leads to higher C-sections for the high-
risk patients, while it reduces the rate for low-risk patients. More importantly,
the effect of decision-making skill has a zero average effect. This is important
because most of the public policy concern has been with the high C-section rates,
and not with the quality of decision making.

The effect of decision-making quality of the physician is reported in the lower
part of the table. Notice that performance increases for both the high-risk and the
low-risk groups. In other words, an increase in C-section rates for the high-risk
patients results in better outcomes. This effect is different than for procedural
skill, which affects mainly the level of C-sections via the ®j term in physician
quality. We can see this because an increase in procedural skill increases the
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C-section rate for both high- and low-risk patients. However, in the lower panel,
we see that outcomes improve for both risk categories.

Our earlier work, Currie and MacLeod (2008), found strong and consis-
tent effects of tort reform upon outcomes, consistent with the hypothesis that a
C-section is not risk free and that physicians respond to financial incentives. These
results are consistent with a long literature in health economics illustrating the
relationship between financial incentives and procedure choice (e.g., Gruber and
Owings 1996). However, for the better physicians, the effect of these reforms was
close to zero, consistent with our hypothesis that there are variations in physician
quality and that the better physicians are not affected by tort law (nor should they
be—in the US, medical liability is a negligence regime, and hence only negligent
physicians should respond to changes in the law).

More importantly, these results illustrate the role that diagnosis plays in de-
termining patient outcomes and that there is not a one-size-fits-all approach for
determining C-sections. We find that for low-risk mothers, the C-section rate is
too high relative to the medically optimal level while for high-risk mothers it is
too low. Currie and MacLeod (2017, p. 33) conclude by observing:

We find that improving decision making by one standard deviation would reduce
C-section rates by 15.5% in the lower half of the distribution of C-section risk, but
would actually increase C-sections by 5.5% in the top half of the distribution. This
finding suggests that there are not only are there too many C-sections among women
without risk factors but also there are too few C-sections in the group who really
needs them.

7. Conclusions

This paper outlines a human capital approach to measuring the treatment effect
of choice in situations where it is not possible or practical to carry out trials
of sufficient precision. I begin with a discussion of randomized control trials of
drugs for treating depression. This example illustrates the difficulty of measuring
a consistent relationship between patient characteristics and outcomes. Thus, it is
not surprising that Frank and McGuire (2000) find that the problems with health
delivery for physical illness are all magnified when it comes to mental health.
This is also consistent with the recent results of Dickstein (2012), who finds that
prescription behaviour by psychiatrists is very sensitive to the reimbursement
rates offered by insurance plans. This points to a need for a better understanding
of how to design treatment as a function of patient observables.

The rest of the paper discusses a human capital approach to this problem.
It is built upon two generic features of human capital. First, the fact that ex-
perts have a great deal of training/human capital implies that their decisions can
be used to to organize individuals into groups that, as a group, should have similar
treatment needs. Here, simple machine learning techniques can be used to
estimate a propensity score for each group—the likelihood that individuals in
a group receive an intensive treatment by the average expert.
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Second, even though experts are skilled, they necessarily make mistakes. This
is consistent with the fact that human capital is expensive to acquire—at some
point, it is not worthwhile or possible to increase decision-making skill. As em-
phasized by the Rubin–Holland potential outcomes approach, such errors are
essential if we are to measure the size of a treatment effect. Under the hypothesis
that, conditional upon the propensity score, errors are uncorrelated with patient
characteristics, then one can consistently estimate the treatment effect. This pro-
vides a “structural” interpretation of propensity score estimators (Rosenbaum
and Rubin 1983 and Hirano et al. 2003).

The analysis also illustrates the point that when optimal decisions vary with
the characteristics of the units, the average treatment effect is not necessarily
very useful (even if well measured) because it averages over a group of units
where the treatment effect is both positive and negative. In the case of heart
attack patients, Currie et al. (2016) find that the optimal choice from a medical
point of view is to provide all patients with an invasive procedure. However,
our results identify some systematic heterogeneity in treatment across patients.
Physicians from better hospitals tend to be more responsive—namely, they are
less likely to do an invasive procedure for low appropriateness patients, which,
in practice, corresponds to older patients (see table A1 in Currie et al. (2016)).
This is consistent with the hypothesis that these physicians are sensitive to factors
other than medical necessity when making their decisions.

In the case of child birth, Currie and MacLeod (2017) find that there is a great
deal of heterogeneity in the decision to perform a C-section. It is widely believed
that some of this heterogeneity is due to financial incentives that may explain
the high C-section rates in the United States.16 We found this to be the case for
low-risk births. However, in the case of high-risk births, our results imply that
the C-section rate is too low. When we average over the two groups, and take into
account the number of women at risk, we find that the mean C-section rate in
New Jersey is too low relative to the medically optimal rate.

Much more work is needed to explore the robustness of these results. However,
the case of C-sections does illustrate an important public policy issue where more
work is needed to link measured treatment effects to policy recommendation, a
point that Heckman and Smith (1995) and Dehejia (2005) have already empha-
sized in the case of program evaluation. The finding in Currie and MacLeod
(2017) that average C-section rates are too low in New Jersey is consistent with
recent work by Molina et al. (2015), who look at C-section rates worldwide. They
find that the WHO guidelines of 10%–15% C-section rates are too low and that
19% may be a more appropriate norm. However, as D’Alton and Hehir (2015)
point out in their discussion of this paper, whether to have a C-section should be
based upon high-quality information. Not only should the C-section incidence
vary with the characteristics of the mother but also it should also vary with the
characteristics of the physicians and characteristics of the hospital where child
delivery is occurring.
16 See Gruber and Owings (1996) and Consumer Reports (2016).
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These examples provide concrete illustrations of what Deaton (2010) calls the
well-known “heterogeneity problem.” The contribution of the human capital ap-
proach is to provide one way to combine structure with randomization, as recom-
mended by Heckman (2010). Decision making by the expert provides structure
to organizing patients into groups in a way that is analogous to the propensity
score method of Rosenbaum and Rubin (1983). Once we condition upon best
practice as perceived by the expert, then one can identify the conditional treat-
ment effect under the hypothesis that even experts make mistakes. We can exploit
the variation in error rates between experts to learn what strategies works best.

It is worth emphasizing that the approach here is a bit different from the typi-
cal machine learning strategy. For example, supervised learning of an algorithm
begins with a training set produced by experts to “teach” the algorithm what the
best decisions are in certain situations. Once trained, one can test the algorithm
out of sample (see Athey and Imbens 2015 for an explicit application of these
ideas to estimating the conditional average treatment effect).

Another approach is to develop optimal statistical decision rules in the pres-
ence of heterogeneous treatment effects (Sun and McLain 2012). Gu and Shen
(2016) show that this approach can be applied to estimating the heterogeneous
effect of attending a more selective school, though, it is limited to one-sided
testing. A promising direction is to extend optimal statistical decision rules to
cases where the sign of the treatment effect is not known.

The approach suggested here combines the wisdom of experts to characterize
subpopulations with the fact that experts do make mistakes (Kahneman and
Klein 2009). Rather than sample only the best decision makers, the human capital
approach suggests using a large sample with many decision makers to generate
variation in decisions over subpopulations of the treatment unit. This allows one
to estimate the conditional average treatment effect for finer subpopulations than
would be possible with structured randomized control trials. Within the medical
community, there has been a great deal of attention paid to improving decisions
and reducing errors. One of the recognized challenges is to systematically collect
more high-quality data that would allow the type of the analysis suggested here.17
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